If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+8w-56=0
a = 1; b = 8; c = -56;
Δ = b2-4ac
Δ = 82-4·1·(-56)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{2}}{2*1}=\frac{-8-12\sqrt{2}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{2}}{2*1}=\frac{-8+12\sqrt{2}}{2} $
| 5(s-30)=-10 | | X+1x+2x+3=36 | | 42b=8 | | m-5÷2=4 | | 3x+1+3x+4+2x-1=180 | | 14x=42x= | | n/5=n/6-50 | | 50-2x=-100 | | 12-3b+7=7b+21-2b | | (2*x)+(1/2*x)+(1/4*x)+3=300 | | 2*x+1/2*x+1/4*x+3=300 | | x²+4x+4=16+x² | | 11x=35+6x | | 8x+2=7(x+3)+7 | | 7p+14÷2=7p | | 2.25+0.2(m-1)=7.65 | | 2.25+0.2(m-1)=6.05 | | (-3/v+4)=(3/4v+16)+2 | | 6a^2-43a+42=0 | | 6^3x=279936 | | 4x-2=-9x+3 | | 73x=18x-345 | | 7k-4=13 | | -169q-3.3=17.3q+17.22 | | 54x=8x+564 | | 2(5)^t+3=63 | | 19x-6=7x+3 | | 13x+8=7x-2 | | 32x-4=8x-9 | | 12x-10=4x-8 | | 2x-33=5(x+33) | | 374=20g+75 |